
Deterministic Finite Automaton for Scalable Traffic

Identification: the Power of Compressing by Range

Rafael Antonello, Stenio Fernandes, Djamel Sadok, Judith

Kelner

Federal University of Pernambuco (UFPE)

Recife, Brazil

Géza Szabo

Ericsson Traffic Lab

Budapest, Hungary

Abstract— Deep Packet Inspection (DPI) systems have been

becoming an important element in traffic measurement ever

since port-based classification was deemed no longer appropriate,

due to protocol tunneling and misuses of well-defined ports.

Current DPI systems express application signatures using

regular expressions and it is usual to perform pattern matching

through the use of Finite Automaton (FA). Although DPI systems

are essentially more accurate, they are also resource-intensive

and do not scale well with link speeds. Looking to this area of

interest, this paper proposes a novel Deterministic Finite

Automaton, called Ranged Compressed Deterministic Finite

Automaton (RCDFA), that compresses transitions without

additional memory lookups. Experimental results show that

RCDFA yields space savings of 97% over the original DFA and

up to 93% better compression when compared to the DFA’s

state-of-the-art compression techniques.

Index Terms— DFA Optimizations, Deep Packet Inspection,

Performance Evaluation, Computer Networks

I. INTRODUCTION

N the past few years, network traffic characterization has

become an important tool for accurate network management

and traffic profiling. It is well known that port-based

classification is inaccurate, due to traffic tunneling, for

applications that use other ports assigned to well-known

services in order to evade firewalls rules, such as P2P

applications [4][7][5]. For that reason, traffic classification

techniques have been recently relying on Deep Packet

Inspection (DPI) engines. Such systems frequently perform a

set of time-critical operations to verify certain application

patterns or behaviors, while trying to minimize packet

processing delays. Although DPI systems are essentially more

accurate, they frequently perform a set of time-critical

operations and are consequently resource-intensive. Therefore,

if not proper designed, they may not scale well with link

speeds. In general, a DPI system works as follows: first it has

to collect packets from the network interface cards (NIC),

create a data structure to represent incoming packets as

network flows (usually as a hash table), and forward or store

the received packets for further processing. After that it

searches for well-known patterns within the packet payload

(i.e. application signatures) for each flow. Pattern matching

procedures in DPIs are usually performed at the user-space

level and are highly processing intensive, which causes

significant packet losses. In other words, even though NICs

and Operating Systems’ (OS) kernel can keep up with packets

arriving at wire-speed, the pattern-matching component of the

DPI system may not be able to deal with all the incoming

packets without strangling the processor, thus incurring losses.

Currently, DPI systems express patterns using regular

expressions [10]. Therefore, it is natural for them to perform

pattern matching through the use of Finite Automaton (FA).

State-space explosion of Deterministic FAs (DFA) may

require an unacceptable amount of memory space [10].

Decreasing the complexity of matching procedures and

reducing the memory consumption of DFAs are the main

goals of research studies in this field. This paper proposes and

evaluates a novel DFA that aims to decrease space

requirements when used to perform pattern matching in DPI

systems.

The contributions of this paper are two-fold: first, we have

proposed a novel Deterministic Finite Automaton, called

Ranged Compressed Deterministic Finite Automaton

(RCDFA). RCDFA is based on the following key observation:

several consecutive transitions lead to the same destination

state. Smart transition representations result in huge space

savings over a standard DFA. Second, we have developed an

algorithm for converting FAs from the original DFA to

RCDFA. This implies that previously developed and well-

tested algorithms for parsing from a regular expression to

Non-Deterministic FAs (NFA) and DFAs can be reutilized.

We also evaluate and compare the performance of RCDFA to

state-of-the-art DFA variations for traffic identification.

The remainder of this paper is organized as follows. Section
II presents related work. Section III presents our new
Automaton model. Section IV shows the methodology used on
RCDFA evaluation and Section V presents experimental
results. We discuss our findings in Section VI. Concluding
remarks and suggestions for future work are presented in
Section VII.

II. RELATED WORK

Although flexible and expressive, automata-evaluated

regular expressions traditionally are memory-greedy and

severely limit performance in most platforms. Developing DPI

systems at multi-gigabit rates is a difficult task as they need to

achieve high processing speeds while limiting memory

consumption or access. Research studies have been adding

some features to the original automata formalism in order to

meet such speed and memory consumption requirements.

I

155978-1-4673-0269-2/12/$31.00 c©2012 IEEE

In [11] Yu et al. proposed two rewrite rules that can

dramatically reduce the size of the resulting DFAs. They

developed techniques to combine multiple DFAs into a small

number of groups in order to improve matching speeds.

Kumar et al. [8] introduced a new representation for regular

expressions, namely Delayed Input DFA (D
2
FA). D

2
FA is

based on a technique used in the Aho-Corasick string

matching algorithm. They observed that, in the case of

practical rule-sets commonly used in network intrusion

detection systems, many groups of states share sets of

outgoing transitions. Therefore, in order to explore the

redundancy present in these DFAs, they introduced a special

type of transition, called default transitions. With such a

modification, when matching an input string a default

transition is used to determine the next state, whenever the

current state has no outgoing edge labeled with the current

input character. In [9], Kumar et al. proposed a new

representation for the D
2
FA, namely Content Addressed

Delayed Input DFA (CD
2
FA), which aims to improve its

throughput. CD
2
FA provides a compact representation of

regular expressions that match the throughput of traditional

uncompressed DFAs. Becchi et al. [3] introduced a general

compression technique to reduce the number of transitions of a

DFA with lower provable bounds on memory bandwidth,

namely Fast Compression. Similar to D
2
FA, this modification

reduces the amount of memory needed to represent a DFA by

exploiting its redundancy. In [6], Ficara et al. developed a new

DFA variation called DeltaFA. DeltaFA’s compression comes

from the following observations: most default transitions are

directed to states closer to the initial state; and, for any given

input symbol most transitions are directed to the same state.

Becchi et al. [2] proposed a hybrid automaton which

addressed the exponential increase in the number of DFA

states by combining the benefits of deterministic and non-

deterministic finite automata. Basically, their automaton is a

mix of Deterministic and Non-Deterministic Automata. In

[10], Smith et al. proposed the Extended Finite Automata

(XFAs), which augment traditional finite automata by using a

temporary memory manipulated by instructions attached to

states and edges. The author also presented a formal definition

for their XFA and created a technique to build a XFA out of a

regular expression.

Our work differs from the above-mentioned state-of-the-art

models by exploring consecutive transitions in order to reduce

space requirements. The central idea is simple, but very

effective and not simplistic. Our model also proves to

maintain a stable compression ratio when applied to a number

of data sets, while previous work yields different results for

datasets with different characteristics.

III. TECHNICAL BACKGROUND AND THE RANGED

COMPRESSED DETERMINISTIC FINITE AUTOMATON (RCDFA)

FA formalism is a well-known and well-established theory.

It was developed over decades and applied to several different

fields as pattern recognition, lexical analysis in compilers, and

recently to computer networks for network security and traffic

classification. Although FA formalism is solid and general

enough to deal with the above-mentioned applications, for

some specific applications, it can exceed available resources,

causing poor performance. One could make FA faster and

improve resource consumption by reducing its generality, i.e.,

by modifying the formalism or the algorithms to adapt them to

specific applications. This can create a FA variation, or even a

new kind of abstract machine. In fact, some previous studies

have created new FA variations. Strictly speaking, some of

them are not FA variations, but new abstract machines, which

use part of the FA theory to support themselves. Most

previous research studies do not specify how to convert from a

RE to its abstract machine. Instead, they use a FA as a base to

create its abstract machine. From a practical view point, this is

acceptable, as we are using a well-developed theory as base

for a new and more specific one. However, we must keep in

mind that these modifications are not standard FA and can

have restricted use.

Following this trend, we looked into the original FA

formalism and explored opportunities to reduce space

requirements. We found some room for optimization by

observing consecutive transitions leading to the same

destination. Optimizing this aspect of a FA will decrease

memory usage for storing transitions and will consequently

decrease the memory footprint during the pattern matching

procedure. Some previous work [2][3] applied a similar

technique to export a FA to dot format
1
 for later graphical

representation conversion. However, they neither used it for

compressing FA purposes nor described it as a new abstract

machine model.

In this work, we aim to decrease the matching complexity

and to provide memory savings on DFAs. Basically, we

explore an algorithm to compress transitions without

additional memory lookups. In other words, we aim at finding

a good tradeoff between compression and matching speed. In

addition, we tolerate the decrease of the model generality in

order to obtain additional memory savings and performance

gains. Therefore, our solutions are restricted to the traffic

classification domain.

A. Motivational Example

Some previous studies focused on decreasing the number of

transitions by looking for similar transitions in different states.

For instance, D
2
FA [8] tries to reduce the number of

transitions by removing the ones common to pair of states and

by introducing a default transition into it (default transitions

are triggered without consuming an input symbol). Although

that technique is efficient in compressing transitions, it also

introduces additional memory accesses per input symbol.

In order to make things clearer, let’s analyze the DFA

created for recognizing the regular expression (regex)

^\x01[\x08\x09][\x03\x04] (from L7-Filter’s FreeNet

1Dot Language. http://www.graphviz.org/doc/info/lang.html

156 2012 IEEE Network Operations and Management Symposium (NOMS)

application signature). The automaton pres

seems to be very simple, with 5 states an

However, it hides a pitfall, since som

represented as intervals (the leftmost tran

according to the automata theory, every stan

has one transition for each alphabet symbo

Therefore, supposing the DFA below uses t

its input alphabet, it has 5 (number of states

length) = 1280 transitions, although we only

FIGURE 1 – DFA FOR FREENET RE

With a good understanding of the autom

we explored opportunities for improvemen

visual aid used to present the above DFA ca

to compress the real automaton. Surprising

studies depicted automata with some

compression, although no one used them as a

technique. This could be partially due to

finding a suitable memory layout for repr

kind of automata. Figure 2 presents the

although it separates the traditional transition

transitions (transitions for a char range). R

are in red (solid line) and ranged transition

line). As we can see, this decreased the num

from 1280 to 2 regular (or single) transitio

transitions.

FIGURE 2 – DFA FOR FREENET RE

This way of representing transitions will

called a Ranged Compressed Deterministic

(RCDFA). RCDFA is a slightly differe

although compatibility with the standard D

ented in Figure 1

nd 10 transitions.

me transitions are

nsitions). In fact,

ndard DFA always

ol for every state.

the ASCII table as

s) * 256 (alphabet

see 10.

GEX

maton complexity,

nts. Actually, the

an be also adapted

gly, most previous

kind of visual

a real compressing

 the difficulty in

resenting this new

same automaton,

ns from the ranged

Regular transitions

ns in blue (dotted

mber of transitions

ons and 8 ranged

GEX

l lead to what we

Finite Automaton

ent DFA model,

DFA is guaranteed

by ensuring that both delta fun

the next subsections we descri

algorithm to convert from a DF

B. RCDFA Definition

We describe the above-men

kind of abstract machine (R

represents consecutive trans

destination state as a unique r

convert transitions for charact

iq , where mn ≥ and
i cq ,(δ

n to a unique ranged transit

slightly changed the FA forma

of transitions. Therefore, the

quintuple R=),,,,(0 FqQ δ , w

1. Q is a finite set of s

2. is a finite set of

3. QQ →× 2:δ

takes a state and

arguments and retur

4. 0q is the initial stat

5. QF ⊆ is a set of

C. RCDFA and DFA Equ

As mentioned before, RCD

enforced by ensuring that bo

same results for every state a

make sure that (,(mircdfa csδ

and ∈c for j varying from

Figure 3 shows the algorit

DFA equivalence. Initially, it

RCDFA (line 2), then it verifie

state (line 3). In line 4, it ite

transition t (recall that tran

represented as a pair of symbo

Lines 5 and 6 compare both D

a different result is found, the f

different. If no difference

equivalent.

FIGURE 3 – ALGORITHM FOR

EQUIV

At first look, the checking

state (N), one for each alpha

1: function checkEquiv
2: for s=0 to GetNumb
3: for each t(m,n) i
4: for c = m to n d
5: if GetNextState

RCDFA, (m,n)) then
6: return false;
7: return true;
8: end function

nctions’ results are identical. In

ibe the RCDFA, as well as the

FA to a RCDFA.

ntioned modification as a new

RCDFA). This new machine

sitions going to the same

ranged transition. Basically we

ter ranges
nm cc for a state

lj q=) for j varying from m to

ion
nmt −

to the state
lq . We

alism to deal with this new type

new RCDFA model is also a

where;

states;

input symbols;

 is a transitional function that

an input symbol “range” as

rns a next state;

e that belongs to the set;

final or accepting states.

uivalence

DFA and DFA equivalence is

oth Delta’s functions have the

and symbol. Thus, we need to

),()), jidfanm csc δ= Qs ∈∀

m m to n where mn ≥ .

thm for checking RCDFA and

t iterates over all states of the

es every transition of the current

erates over all symbols of the

nsitions in the RCDFA are

ols instead of a unique symbol).

Delta’s function results, where if

function returns and the FAs are

is found, the automata are

CHECKING DFA AND RCDFA

ALENCE

function demands one step for

abet symbol transition and one

valence(DFA, RCDFA)
berOfStates(RCDFA) do
n GetTransitions(RCDFA)do
do
(DFA, c) GetNextState(

2012 IEEE Network Operations and Management Symposium (NOMS) 157

additional per symbol (C2
) in the state. Hence its time

complexity would be O(N x C2
), O(n

3
). However, each

transition represents a range of symbols, and a range could be

at maximum C symbols length. As a result, the time

complexity actually is O(N x C), i.e. O(n
2
).

D. Converting DFA to RCDFA

The algorithm to convert DFA to RCDFA is

straightforward. In a nutshell, it receives as input an already

computed DFA and then converts it to a RCDFA. It is also

possible to derive a RCDFA directly from a regular

expression. Figure 4 describes the conversion algorithm. In

line 2 it iterates over all states present in the DFA received as

parameter. Lines 3 to 20 initialize an array with one position

for every symbol present in the input alphabet. Then, for every

symbol in the alphabet, it creates a range transition if the

subsequent symbols go to the same destination (lines 6 to 20).

As far as we are concerned with complexity, the conversion

algorithm requires one step per state (N) and two more per

symbol (2C). This results in O(N X 2C) complexity, i.e. O(n
2
).

FIGURE 4 – ALGORITHM FOR CONVERTING DFA INTO RCDFA

E. RCDFA’s Matching Process

The matching procedure is now quite different from the

original DFA. With the RCDFA, the matching procedure

looks to see if the input matches on a character range instead

of a single character. Figure 5 shows the matching process for

a RCDFA. is the transition table mapping from a

state s and a input char j to a next state d. First, the algorithm

loads the information for the state s and then it looks for the

next state. Basically, the lookup process is similar to the DFA;

however the transition table’s internal organization is totally

different. It has transitions represented as ranges, therefore it

verifies if c belongs to a range (where) instead

of comparing with a single character transition.

FIGURE 5 – ALGORITHM FOR LOOKING UP ON A RCDFA

F. Combining Models

RCDFA is orthogonal to other models, i.e. it can also be

combined with most of previously developed automaton

models. Therefore, applying RCDFA over other automaton

model could lead to additional compression. Although some

previous techniques claim to be orthogonal to the others, we

need to carefully analyze which techniques could be used this

way. Misuses of such a tool can result in non-equivalent

automata, i.e., different results for the automata’s Delta

functions. For example, both Fast Compression and D
2
FA

techniques reduce the automaton’s transitions by adding

default transitions to it. Those default transitions are organized

by taking into account the likelihood of destination states of

neighbors’ state transitions. In fact, they use the insertion of

default transitions for deleting transitions. Actually, one could

consider them as the same technique with different policies for

organizing default transitions and deleting labeled transitions.

At this point it must be clear that those two techniques cannot

be applied orthogonally one to another. Applying D
2
FA over

Fast Compression would disorganize the transition

arrangements of the latter. We analyzed the RCDFA’s

orthogonality and found out it is very suitable for default

transitions’ based models. Consequently, RCDFA can be

applied over D
2
FA and Fast Compression with minor

adaptations. We do not show the complete algorithm for

converting between D
2
FA/Fast Compression to RCDFA due

to lack of space. Actually, RCDFA conversion algorithm

needs only to take into account D
2
FA/Fast Compression’s

default transition to be fully compatible. Figure 6 presents the

difference between the conversion of DFA to RCDFA and

D
2
FA/Fast automata. Before line 21, the algorithm is the same

as presented in Figure 5. After line 21, the algorithm had to be

changed to deal with default transitions. In summary, this

piece of code checks if there is a default transition for the

current state. If so, it adds the default transition to the new

automaton.

FIGURE 6 – ALGORITHM FOR CONVERTING D2FA/FAST INTO RCDFA

RCDFA is also orthogonal to DeltaFA and, even better,

conversion from DeltaFA to a RCDFA does not require

1: function RcdaLookup(s, c)
2: read(s);

3: d := ;
4: return d;
5: end function

1: function compressDFA(DFA)
2: for each state in DFA
3: for each symbol in alphabet do
4: mark[symbol] := not marked;
5: end for;
6: for each symbol in alphabet do
7: if mark[symbol] = not marked then
8: mark[symbol] := marked;
9: target:=GetNextState(DFA,state,

symbol);
10: ranged := false;
11: begin_range = symbol;
12: end_range = next symbol;
13: while end_range < alphabet size and
14: GetNextState(DFA, state, end_range) =

target do
15: mark[end_range] := marked;
16: end_range := next symbol;
17: end while;
18: transitions_table[state] := new

transition(begin_range, end_range);
19: end if;
20: end for;
21: end for;
22: end function

21: defdst=GetDefaultTransitions(DFA,
state)

22: if (defdst EMPTY)then
23: defaulttransitions[state]=deftrans;
24: endif;
25: end for;
26: end function

158 2012 IEEE Network Operations and Management Symposium (NOMS)

changes to the algorithm presented in Figure 5. Therefore, we

only need to have a DeltaFA as an input instead of a standard

DFA. The output is then a combination of DeltaFA and

RCDFA.

The Deterministic Automata created by such combinations

is summarized in TABLE I. Basically, we applied the ranged

compression over the other three models, namely Fast

Compression, D
2
FA, and DeltaFA.

TABLE I – Combined Automata

Automaton’s

Name

Description

RcFast Ranged compression applied over a Fast compressed

automaton

RcD2FA Ranged compression applied over a D2FA automaton

RcDelta Ranged compression applied over a DeltaFA automaton

IV. METHODOLOGY

This section shows the methodology used for evaluating our

new automaton model. We collect metrics directly from the

Automaton, i.e., we convert a signature (from a given

signature set) into an automaton which recognizes it. We then

apply the compression algorithms creating each automaton

model. Finally, we compute performance metrics.

TABLE II presents the factors and levels we used in our

experiments. In summary, to test our model we used five

different signature sets, namely L7-Filter, Bro, Snort-Web,

Snort-ActiveX, and Snort-Spyware. TABLE III shows the most

important parameters of each set, following the classification

method proposed in [1]. L7-Filter base is the smallest one, but

with moderate complexity. Bro is medium size, but with low

complexity. SnortWEB also presents medium size although

with high complexity. The largest base (SnortActiveX) is also

very complex. Finally, SnortSpyware is not complex and is

medium size. Those signature sets give us a good sample of

real world expressions which DPI engines must tackle. These

signatures were collected on October 2010.

TABLE II – Evaluation Factors and Levels

Factor Levels

Signature Set SnortWEB, SnortSpyware, SnortActiveX, Bro and L7-

Filter

Automata model RCDFA, Fast Compression, DeltaFA, and D2FA

TABLE III – Signature sets’ main characteristics

Sig-Set Base Size Sub-Pattern

number

Overall

complexity

L-7 Filter Small Medium Moderate

Bro Medium Low Low

Snort-Web Medium Medium High

Snort-ActiveX Large High High

Snort-Spyware Medium Medium Low

We adopted the following metrics in our evaluation:

• Total of transitions: Number of automaton’s transitions;

• Single character transitions: Transitions which cannot

be collapsed with others forming character ranges;

• Ranged transitions: Transitions which can be triggered

by character ranges;

• Space reduction: space reduction percentage over

original DFA and other techniques;

• Transitions per state: the average number of transitions

per state.

V. EXPERIMENTAL RESULTS

Firstly, we compare the total transitions number of each

model (D
2
FA, RCDFA, DeltaFA and Fast Compression).

Secondly, we show the compression rate over the original

DFA model. Then, we compute how much better RCDFA

compress over D
2
FA, DeltaFA, and Fast Compression. And,

finally, we show the average number of transitions per state

for each model.

A. L7 - Filter

For L7-Filter signatures, Fast Compression algorithm

presented the largest number of transitions; around 1.4M

transitions were used to represent all expressions whereas Fast

yielded 900K. D
2
FA utilized 500K transitions and RCDFA

used only 55K transitions, where 17.5K were single transitions

and 38.5K were ranged transitions.

Figure 7 shows the compression rates for every DFA

modification. As we can see, DeltaFA technique had the worst

result, since it reduced the DFA size in only 34.2%. Fast

compression reduced the number of transitions in 59.2%.

D
2
FA achieved 76% and RCDFA was able to remove 97.4%

of the original DFA’s transitions. In fact, RCDFA compressed

96%, 93.8% and 89% better than DeltaFA, Fast Compression

algorithm and D
2
FA, respectively. RCDFA yielded far

superior compression for the L7-Filter data set, which makes it

more suitable for application/protocol identification signatures

and more adequate for platforms where memory consumption

is an issue.

FIGURE 7 – COMPRESSION RESULTS FOR L7 FILTER

TABLE IV depicts the average number of transitions per

state. As one could notice, standard DFAs always have | |

symbols per state. For most DPI scenarios this is the ASCII

table length (256 symbols). Therefore we take 256 symbols as

our worst case. DeltaFA reduced this number to around 168

transitions in average. Fast Compression presented 104

transitions per state in average. D
2
FA had around 60

transitions per state. Again, RCDFA has better results. It

requires, in average, around six transitions per state.

2012 IEEE Network Operations and Management Symposium (NOMS) 159

 TABLE IV – Average Number of Transitions per State

Model StdDFA FastDFA D2FA RCDFA DeltaFA

Number 256 104 60.2 6.4 168.4

B. Bro

This time, D
2
FA had the biggest number of transitions,

137K. DeltaFA and Fast Compression had about half than

D
2
FA, 75K and 68K transitions respectively. RCDFA shows

only 19K transitions, where over 8.5K were single transitions

and ranged transitions accounted for 10.6K.

Compression comparison among all techniques is shown in

Figure 8. For the Bro base, the compression rate is not too

different than it was for L7-Filter. D
2
FA had the smallest

compression, around 82% followed by Delta with 90%. Fast

Compression reduced the number of transitions in around

92%. Again, RCDFA performed well, presenting almost the

same compression rate as for L7-Filter, 97.5%. For

comparison, RCDFA compressed 86% better than D
2
FA,

74% better than Fast compression and around 72% better than

Fast algorithm.

FIGURE 8 – COMPRESSION RESULTS FOR BRO

TABLE V shows the average number of transitions for each

model. As we can we see, for Bro regex, all techniques greatly

decreased this metric. D
2
FA has the worst result, around 46

transitions per state, followed by DeltaFA with an average of

25 transitions. Fast utilized around 23 transitions per state.

RCDFA reduced far better, it achieved similar results for this

base, around 6 transitions per state.
TABLE V – Average Number of Transitions per State

Model StdDFA FastDFA D2FA RCDFA DeltaFA

Number 256 23 46 6.4 25.9

C. Snort-Web

For Snort-Web rules, D
2
FA presented the highest number of

transitions (572K) followed by DeltaFA with 456K

transitions. Fast Compression had 339K transitions. RCDFA

presented only 75K composed of 35K single transitions and

40K ranged transitions.

Figure 9 compares the compression ratio (CR) for each

technique. D
2
FA compressed the original DFA about 76%,

followed by DeltaFA with 81%. Fast Compression reduced the

number of transitions by 86.3 %. RCDFA achieved

compression of around 97% (96.9%). Summarizing, RCDFA

compressed 77.7% better than Fast Compression and around

83% compared to DeltaFA. It also outperformed D
2
FA by

around 86%. As far as we are concerned, in all bases analyzed

so far, RCDFA has achieved a CR of around 97%.

FIGURE 9 – COMPRESSION RESULTS FOR SNORTWEB

The average number of transitions per state is presented in

TABLE VI. In this case, all techniques considerably reduced the

average number of transitions per state. As expected, D
2
FA

had the worst result, around 59 transitions. DeltaFA yielded 47

and Fast Compression just about 35 transitions in average.

RCDFA maintained its steady results presenting only 7

transitions per state in average.
TABLE VI – Average Number of Transitions per State

Model StdDFA FastDFA D2FA RCDFA DeltaFA

Number 256 35 59 7.7 47

D. Snort-ActiveX

For this base, the results were different than the previous

ones. Fast Compression had almost the same number of

transitions as RCDFA. The former had 5.6M transitions and

the latter presented 6.6M. D
2
FA and DeltaFA presented 34M

and 27M transitions respectively, far greater than the other

bases.

Following, Figure 10 depicts the compression comparison

among the DFAs. At this time Fast Compression had slightly

superior results compared to RCDFA, yielding 97.6% against

97% for RCDFA. D
2
FA achieved 85% of reduction and

DeltaFA had results of 88% for this signature set. For this

base, Fast Compression algorithm performed 6% better than

RCDFA, although RCDFA was still more efficient than D
2
FA

and DeltaFA by around 93% and 88%, in that order.

FIGURE 10 – COMPRESSION RESULTS FOR SNORT-ACTIVEX

TABLE VII shows the average number of transitions per

state. In this case D
2
FA had the worst result with 38

transitions, followed by DeltaFA with 30 transitions per state

in average. Fast Compression and RCDFA presented almost

the same results, 6 transitions for the former and around 7 for

the latter.

160 2012 IEEE Network Operations and Management Symposium (NOMS)

TABLE VII – Average Number of Transitions per State

Model StdDFA FastDFA D2FA RCDFA DeltaFA

Number 256 6 38.3 7.5 30.5

E. Snort-Spyware

In this section, we show results from the last signature set,

Snort-Spyware expressions. D
2
FA once more presented the

highest number of transitions, around 642K transitions,

followed by DeltaFA (414K). Fast had over 251K transitions

and RCDFA around 93K, distributed as follows: 40K single

transitions and 52K ranged transitions.

FIGURE 11 – COMPRESSION RESULTS FOR SNORT-SPYWARE

Figure 11 compares the compression rates for every kind of

DFA. RCDFA was able to reduce original DFA by 97.3%,

followed by the Fast model with 92.9%. DeltaFA and D
2
FA

had the lowest compression, 88.3% and 81.5%, in that order.

In this base, RCDFA performed 63% better than the Fast

technique and 77% better than the DeltaFA. RCDFA

outperformed D
2
FA by 85%. TABLE VIII presents the average

number of transitions per state. Again, all techniques

decreased considerately in this metric. D
2
FA yielded 46

transitions per state followed by DeltaFA with 29 transitions.

Fast Compression produced 18 transitions per state. RCDFA

once again presented around 6 transitions per state in average.
TABLE VIII – Average Number of Transitions per State

Model StdDFA FastDFA D2FA RCDFA DeltaFA

Number 256 18 46.1 6.7 29.7

Due to space constraints, this paragraph presents the

variation related results for the average number of transitions

per state for all techniques and signature bases. In summary

D
2
FA, Fast Compression and DeltaFA presents at most 256

transitions per state and at least one for all signature bases.

Their standard deviations ranged from 32 to 123 (in general,

greater than 70). On the other hand, RCDFA has at most 37

and at least one to three transitions per state for all bases. Its

standard deviation is very low, around 3 for every base.

F. RcFast, RcD2FA and RcDelta Resuls

This subsection presents the experimental results for all

techniques used in conjunction with RCDFA.

TABLE IX presents the combined automata’ transition

reduction over standard DFA, i.e., how many transitions

RCDFA reduced over other techniques compared to standard

DFA. RcFast (Ranged Compression over Fast Compression)

reduced from 98.5% to 99.4% when compared to the original

DFA’s transitions. RcD
2
FA (Ranged compression over D

2
FA)

compressed around 99% for all signature bases. RcDelta

(Ranged compression over DeltaFA) was able to reduce the

original DFA from 97.8% to 98.6%. From these results, we

argue that the best combination is RCDFA and Fast

Compression. On average, together they are able to decrease

the number of transitions in 99.16%.
TABLE IX – Combined Automata’ Reduction over DFA

Model L7 Bro Snort

Web

Snort

ActiveX

Snort

Spyware

RcFast 98.5% 99.3% 99.2% 99.4% 99.4%

RcD2FA 99.1% 99.1% 99% 99% 99.2%

RcDelta 97.8% 98.6% 98.5% 98.6% 98.5%

TABLE X shows the combined automata’ reduction over the

already compressed automaton. For example, for RcFast this

means how better the combined technique (RCDFA + Fast)

performed over the Fast Compression alone. For almost all

cases, the Ranged Compression combined with other

techniques is able to decrease more than 90% over the single

compressed technique. The worst result on average is for

Snort-ActiveX base. As Ranged Compression had its worst

results with this base, this was implied within the combined

automata as well.

TABLE X – Combined Automata’ Results over Compressed

Technique

Model L7 Bro Snort

Web

Snort

ActiveX

Snort

Spyware

RcFast 96.4% 93.5% 94.8% 75% 92.5%

RcD2FA 96.5% 95.4% 95.8% 93% 95.6%

RcDelta 96.7% 86.1% 92.1% 88% 90.7%

VI. DISCUSSION

In the previous section we compared the transition’s

number and compression ratio for each signature base and

automata model. RCDFA presents very good results for L7-

Filter. This indicates applicability for detecting application

and protocol. RCDFA also satisfactorily compresses

signatures of IDS systems. It also presents compression of

around 97% for IDS’s signature sets. However, for Snort-

ActiveX signatures, Fast algorithm performs 6% better than

RCDFA. Scrutinizing this dataset, we noticed that these

signatures have an elevated number of sub-patterns. Therefore,

in datasets containing signatures with too many sub-patterns,

Fast Compression presents additional compression and

slightly better results. For all other scenarios, RCDFA

outperforms Fast and D
2
FA and even better, its compression

rate remains stable around 97% when applied over datasets

with different characteristics.

Additionally, we were able to apply RCDFA orthogonally

to other techniques. From a practical point of view, techniques

that rely on default transitions are very suitable for use with

RCDFA. In such a case, the ones based on default transitions

explore inter-state opportunities for compression and RCDFA

would work on intra-state windows.

Regarding performance, it is a common belief that space

savings are usually possible only in exchange of processing

costs, but in DFAs, this is not always true. Evaluating

performance in terms of memory accesses, standard DFA

2012 IEEE Network Operations and Management Symposium (NOMS) 161

requires 1 memory access per input symbol, whereas D2FA

and FastDFA require on average 2 accesses and DeltaFA

requires 256 accesses. Actually, in [12], the authors showed

that DeltaFA has performance losses of 99% in software

implementation. On the other hand, RCDFA achieves good

space compression while keeping one memory access per

symbol. Therefore, RCDFA yields huge memory savings and

its overall processing cost is comparable to the standard DFA

(i.e., better than the state-of-the-art models). In addition,

RCDFA has an advantage of improving the matching

procedure performance by means of cache spatial locality. As

RCDFA demands less memory space, all transitions will be

closer to each other, therefore cache hit will also improve

along with the overall performance.

Orthogonally, some studies tried to process more than one

input character per lookup, these techniques are known as

multi-stride automata. They can improve matching speed at

the expense of an increased alphabet. RCDFA fits well in this

scenario, as the more symbols an alphabet has, the more

opportunities for ranged compression.

Looking at the experimental results, we can see that for

RCDFA the average number of transitions is very low, around

6 transitions. This opens space for smart memory layouts for

representing RCDFA’s transitions and states. Naïve FA

implementations would represent an automaton as a matrix

mxn where m is |state| and n is |alphabet|. Additionally, each

matrix element has length of (log2|alphabet| + size of pointer)

bits (size of pointer is 32 or 64 bits depending of the hardware

architecture). Obviously, for RCDFA this would result in

memory space wasting as it uses only 6 transitions per state in

average. Consequently, an RCDFA is not suitable for matrix

based representations. Better choices would be linear and

bitmapped memory layout. Particularly, as it has a really low

number of transitions per states, linear encoding is a perfect

match for representing RCDFA.

VII. CONCLUDING REMARKS AND FUTURE WORK

In this paper we proposed a new automaton model, RCDFA.

We have thoroughly described it and presented an algorithm

for converting an original DFA to RCDFA. We also ensured

DFA and RCDFA equivalence. Additionally, we showed how

to combine RCDFA with previously developed techniques.

Finally, we evaluated RCDFA and compared it with the state-

of-the-art automaton models for pattern matching. For the sake

of fairness, the experimental evaluation was conducted using

several well-known signature bases. According to the

experimental results, RCDFA is able to compress DFA

transitions in a stable rate of 97%. It also is able to reduce

transitions up to 93% better than previous compression

techniques. Additionally, by combining RCDFA with other

compression techniques, we were able to reduce the number of

standard DFA’s transitions by up to 99.4%.

In the future, we aim to extend the work on optimizations in

the RCDFA, by looking for matching speed improvements.

Efficient ways of materialization of the RCDFA model, in

terms of data structure representation, is also a good research

challenge.

VIII. ACKNOWLEDGMENT

The authors would like to thank the Brazilian Research

Funding Agency (CNPq) and Ericsson Research for

supporting this work, which is part of the project UFP.37

(Broadband Traffic Measurements and Analysis – BTMA,

Phase 3).

REFERENCES

[1] Antonello, R., Fernandes, S., Sadok, D., Kelner, J. “Characterizing
Signature Sets for Testing DPI Systems”, 3rd IEEE Management of
Emerging Networks and Services Workshop - Globecom, Dec 2011

[2] Michela Becchi and Patrick Crowley. 2007. A hybrid finite automaton
for practical deep packet inspection. In Proceedings of the 2007 ACM
CoNEXT conference (CoNEXT '07). ACM, New York, NY, USA.

[3] Michela Becchi and Patrick Crowley. 2007. An improved algorithm to
accelerate regular expression evaluation. In Proceedings of the 3rd
ACM/IEEE Symposium on Architecture for networking and
communications systems (ANCS '07). ACM, New York, NY, USA,
145-154.

[4] Borgnat, P.; Dewaele, G.; Fukuda, K.; Abry, P.; Cho, K.; , "Seven Years
and One Day: Sketching the Evolution of Internet Traffic," INFOCOM
2009, IEEE , vol., no., pp.711-719, 19-25 April 2009.

[5] Dreger, H., et al.. “Dynamic application-layer protocol analysis for
network intrusion detection”. 15th USENIX Security Symposium, 2006.

[6] Ficara, D., Di Pietro, A., Giordano, S., Procissi, G., Vitucci, F., Antichi,
G. “Differential Encoding of DFAs for Fast Regular Expression
Matching”. IEEE/ACM Trans. on Networking Vol. 19, No.3, June 2011.

[7] Dusi, M.; Gringoli, F.; Salgarelli, L.; , "IP Traffic Classification for QoS
Guarantees: The Independence of Packets," Computer Communications
and Networks, 2008. ICCCN '08. Proceedings of 17th International
Conference on , vol., no., pp.1-8, 3-7 Aug. 2008.

[8] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and
Jonathan Turner. 2006. Algorithms to accelerate multiple regular
expressions matching for deep packet inspection. SIGCOMM Comput.
Commun. Rev. 36, 4 (August 2006), 339-350.

[9] Sailesh Kumar, Jonathan Turner, and John Williams. 2006. Advanced
algorithms for fast and scalable deep packet inspection. In Proceedings
of the 2006 ACM/IEEE symposium on Architecture for networking and
communications systems (ANCS '06). ACM, New York, NY, USA, 81-
92.

[10] Smith, R., Estan, C., Jha, S., Kong, S. “Deflating the big bang: fast and
scalable deep packet inspection with extended finite automata”.
SIGCOMM Comput. Commun. Rev. 38, 4 (Oct. 2008), 207-218.

[11] Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and Randy H.
Katz. 2006. Fast and memory-efficient regular expression matching for
deep packet inspection. In Proceedings of the 2006 ACM/IEEE
symposium on Architecture for networking and communications
systems (ANCS '06). ACM, New York, NY, USA, 93-102.

[12] Tingwen Liu; Yifu Yang; Yanbing Liu; Yong Sun; Li Guo; , "An
efficient regular expressions compression algorithm from a new
perspective," INFOCOM, 2011 Proceedings IEEE , vol., no., pp.2129-
2137, 10-15 April 2011.

162 2012 IEEE Network Operations and Management Symposium (NOMS)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

